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1 INTRODUCTION

Let @ denote the Hilbert cube [];-,[—1,1];. In the “Open Problems in Topol-
ogy Book”, WEST |2]| asks the following (Problem #933):

Let the compact Lie group G act semifreely on Q in two ways such
that their fized point sets are identical. If the orbit spaces are
ANR'’s, are the actions conjugate?

The aim of this note is to present a counterexample to this problem. For all
undefined notions we refer to [1].

2 THE EXAMPLE

Let G be a group and let 7: G X X — X be an action from G on X. Define
Fiz(G) ={x € X : (Vg € G)(7(g,x) = x)}. It is clear that Fiz(G) is a closed
subset ot X: it is called the fized-point set of G The action 7 is called semifree
if it is free off Fizx((), i.e., if x € X \ Fiz(G) and 7(g,x) = x for some g € G
then g is the identity element of G. The space of orbits of the action = will be
denoted by X/G. Let I denote the interval [0, 1].
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Let (G denote the compact Lie group T X Z,, where T denotes the circle

group. We identify Z, and the subgroup {—1,1} of T. In addition, D denotes
{ze€C:|z| <1}. Welet G act on D x D in the obvious way:

((g,E), (::c,y)) = (g L, & y) (9 S T,E & {“’13 1}73:?3! S D)a

where “.” means complex multjplication. Observe that this action is semifree,

and that its fixed-point set contains the point (0,0) only. Also, observe that
(D x D)/G~1x D.

LEMMA 2.1 Let H denote either G or T. There is a semifree action of H on

Q x I having Q x {0} as its fixred-point set. Moreover, (Q x 1)/G and @ are
homeomorphic.

ProOF. We will only prove the lemma for GG since the proof for T is entirely
similar. We first let G act on X = D x D x () as follows:

((935)7 (:c,y, Z)) = (g "L, E - y,z) (9 cT e € {“1, 1},27,:1/ c D,z € Q)

This action is semifree and its fixed-point set is equal to {(0,0)} x Q. Also
observe that X/G =~ 1 x D X Q.

We now let G act coordinatewise on the infinite product X°°. This action
is again semifree, having the diagonal A of {(0,0)} x @ in X as its fixed-
point set. Also, X° /G is homeomorphic to (I x D x Q)* ~ Q. Since A
projects onto a proper subset of X in every coordinate direction of X, it

is a Z-set. Since X*° =~ (@ there consequently is a homeomorphism of pairs
(X°,A) — (Q xI,Q x {0}). We are done.

We will now describe two actions of G on @ x [—1,1]. By Lemma 2.1 there
is a semifree action a,: Tx Q X1 — Q x I having @ x {0} as its fixed point set,
while moreover Q X I/G ~ Q. We let T act on @ x [—1,0] as follows:

(2,(q,t)) — (g,s) iff o (z,(g,—t)) = (g, —3)-

We will denote this action by ;. So a = oyUq, is an action of T onto @ x[—1, 1],
having Q x {0} as its fixed-point set. Now define a:G x (Q x [-1,1]) —
Q x [—1,1] as follows:

o(:9.@0) = { GG %), €=

a(z,(g,—t)),

Then & is a semifree action of G onto @@ x [—1, 1] having @ x {0} as its fixed-point
set, while moreover (Q x [—1,1])/& ~ Q. Observe the following triviality.

LEMMA 2.2 If A C Q x [-1,1] is a-invariant such that A is not contained in
Q x {0}, then A intersects @ x (0,1] as well as @ x [—1,0).
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We will now describe the second action on @ x [—1,1]. By Lemma 2.1 there
1s a semifree action 5,:G X @ X[ — @ x I having Q x {0} as its fixed point
set, while moreover Q) X [/G =~ ). Construct 5; from 3, in the same way we
constructed ¢y from «,. Then 8 = [, U 3, is a semifree action from G onto
Q x [—1,1] having @Q x {0} as its fixed-point set. Moreover, (Q x I1)/3 is the
union of two Hilbert cubes, meeting in a third Hilbert cube, hence is an AR.
(It can be shown that (Q x I)/8~ Q.)

Now assume that the two axions & and 3 are conjugate. Let 7: Q x [—1, 1] —
Q x|—1, 1] be a homeomorphism such that for every g € G, 8(g9) = 7" toa(g)oT.

Then 7(Q x (0, 1]) is a connected &-invariant subset of Q) x [—1, 1] which misses
Q x {0}. This contradicts Lemma 2.2.
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